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Abstract: To describe the transition state for many reactions, one needs to specify the progress of two reaction events, such 
as bond breaking and bond making in bimolecular displacement reactions. A physical description then requires that the reaction 
coordinate for a reaction series depends on two progress variables; a chemical description requires comparison with two distinct 
model processes or reference reactions. A theory is developed, based on Marcus' rate-equilibrium theory, which tries to meet 
these requirements. The normalized progress variables, x and y, are defined so that x measures mean progress and y measures 
disparity of progress of the two reaction events. The reference reactions are equilibria involving the species at the end points 
of the progress variables. One reference is the (free) energy change for the reaction itself, reagents = products, as in Marcus' 
theory. The other is the (free) energy change for the reaction of maximum change of disparity, i = h, where i and h are the 
alternative intermediates that are formed when the reaction events occur stepwise. An equation is obtained which relates the 
(free) energy of activation to the (free) energy changes for the reference equilibria and two intrinsic barriers. When the required 
thermodynamic data exist, rate constants can be predicted for an entire reaction family on the basis of a single kinetic measurement. 
The theory is applied with encouraging success to (i) symmetrical proton exchange between a series of benzoic acids and methanol, 
an example of identity reactions, (ii) reaction of hydroxide ion with a series of a-arylnitromethanes, an example of the "nitromethane 
anomaly", and (iii) general base catalyzed addition of alcohols to formaldehyde, an example of coupled structure-energy 
relationships. 

The prediction of reaction rates and equilibria by means of 
linear free energy relationships has enjoyed wide success for many 
years.1"3 As predicted to date, this method is essentially chemical. 
Reactions are classified by molecular and mechanistic criteria and 
predictions are made by simple linear correlations with analogous 
reference reactions. 

Among chemical physicists there are currently two schools of 
thought concerning these relationships. One school maintains that, 
being based on chemical analogies, the relationships are extra-
physical and will eventually be replaced by structure-energy 
relationships obtained by physical methods, including those of 
quantum mechanics. The other school, which includes this paper, 
maintains that the relationships reproduce an important segment 
of physical reality and deserve not to be replaced but to be un­
derstood on a physical basis. Such basis would need to be of broad 
scope and not tied to any narrowly defined physical model. 

Recent work suggests that the physical rate-equilibrium theory 
developed by Marcus,4 originally for outersphere electron-transfer 
reactions, may fit these requirements. In the particular approach 
that has come to be called Marcus [rate-equilibrium] theory,4^5"11 
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one examines energy E as a function of reaction coordinate z and 
deduces a relationship between the activation energy AE* and the 
energy of reaction AE0. (The term "energy" is used here in a 
generalized sense and E denotes whichever of the energy functions 
G, H, V, ... is appropriate for the given problem.) Marcus4 

considered particularly a family of barrier functions consisting 
of intersecting parabolas with equal quadratic coefficients (Figure 
1 a) and derived eq 1. The energy parameter y is the intrinsic 

AE* = 7 + AE0 / 2 + (AE°)2/I6y (1) 

barrier, i.e., the formal barrier when AE0 = 0. Subsequently it 
was hown5'6 that eq 1 applies not only to intersecting parabolas 
but also to any barrier of scaled symmetry (defined later; it permits 
reversing the role of reagents and products), as well as to any 
barrier that can be transformed into one of scaled symmetry by 
a suitable redefinition of the reaction coordinate. 

A few of the barriers leading to eq 1 are shown in Figures 1 
and 2. These examples comprise a remarkable variety of shapes, 
and since the totality of possible shapes is infinite, one may expect 
that the range of applicability of eq 1 will be broad. This ex­
pectation becomes even greater in situations where the fit of eq 
1 need not be mathematically exact; At the transition state, dE/dz 
= 0, and small deviations of real barriers from scaled symmetry 
should cause little error. 

To integrate eq 1 into the framework of linear free energy 
relations, one must consider its application to a reaction series, 
defined as a set of analogous reactions in which structural changes 
in the reagents are limited to substitutions outside the formal 
reaction zone. Interactions between the substituents and the 
reaction zone then correspond to physical perturbations of the 
reaction zone.12 On adopting the approximation that force 
constants of molecular vibrations are unaffected by external 
perturbations,12 one finds that the intrinsic barrier 7 is a constant 
for the reaction series. Marcus showed on this basis that, unless 
the substituent effects 5AJi0 in the reaction series are large, SAE* 
varies nearly linearly with &AE°, with a slope in the range 0-1.4a 

In the terminology of linear free energy relations, eq 1 thus is a 
rate-equilibrium relationship, reproducing (at least formally) such 
important relations as the Bronsted catalysis law.1,2 Moreover, 
Marcus' theory is consistent with two well-known rules for the 
description of transition states: Leffler's postulate13 that the slope 
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Figure 1. Examples of energy barriers for which AE* vs. AE" is given 
by eq 1. y = 20 kcal, AE" = -10 kcal. For further details, see the 
section on Energy Barriers. 

0.40 

Figure 2. Examples of energy wells for which AE* vs. AE° is given by 
eq 1. 7 = -10 kcal, AE0 = 15 kcal. Part a is a parabola. Part b uses 
the transformation function of eq 5 with A = -0.05 and B = 0.05. To 
simulate the energy bumps in part b, z must exceed the normalized range 
Oto 1. 

of a rate-equilibrium relationship measures the position of the 
transition state along the reaction coordinate and Hammond's 
postulate14 that that position is displaced toward the reactants as 
the reaction becomes more exergonic. 

Marcus' rate-equilibrium theory43 does have a major limitation, 
however: the reaction coordinate is assumed to depend on just 
one variable. While it is always possible to define a single variable 
which measures progress of reaction in a single reaction, it may 
take two or more independent variables to define progress of 
reaction for an entire reaction series,8bc,iib,i5-2i -J-J1J8 j s because 
most molecular reactions are the result of two or more reaction 
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events (such as bond breaking, bond making, solvent reorgani­
zation, ...) whose relative progress along the reaction coordinate 
varies for different members of the reaction series. 

Variables that are suitable for expressing the progress of reaction 
events will be called progress variables. One needs as many 
progress variables as there are independently variable reaction 
events at the transition states in the reaction series. Thus, when 
there are two events, one needs two variables, x and y, and the 
reaction coordinate becomes a curved path in the x,y plane. The 
coordinate z* of the transition state becomes z(x*,y*). 

The analysis of energy surfaces in reaction series using two 
progress variables focussed initially on nuclephilic substitution 
on carbon.12-19 Here the SN2-SN1 duality of mechanism suggested 
that the relationship of bond breaking to bond making along the 
reaction coordinate might be different in formally similar reac­
tions.813,17,22 Another productive application was to acid-catalyzed 
addition, base-catalyzed elimination, and termolecular proton-
transfer reactions involving the concerted transfer of two pro­
tons.15,16'21 Such reaction series often give good Bronsted rate-
equilibrium plots. It was found, however, that when the reaction 
coordinates depends on two progress variables, the description of 
transition states by means of linear free energy slopes becomes 
complicated. Such well-known simple rules as the Leffler and 
Hammond postulates13,14 need no longer apply.21 

In spite of their obvious relevance, the preceding studies do not 
fully integrate the physical approach, based on the model of energy 
surfaces with two progress variables, into the framework of linear 
free energy relations. I hope that the present paper will provide 
some missing links. 

To apply the methods of linear free energy correlation one needs, 
above all, analogically suitable reference reactions—as many 
reference reactions as there are independent variables, or two in 
the present case of two progress variables. However, to permit 
a link to the physical model, the reactants and products in the 
reference reactions must be species or molecular configurations 
that appear on the energy surfaces. On that basis, one suitable 
choice of reference reaction is the thermodynamic process, reagents 
-* products, i.e., the formal reaction itself. This choice also agrees 
with that made in the simpler case represented by eq 1 (confirmed 
by the appearance of AE" as an independent variable) and thus 
provides a desirable continuity of model. 

For the second reference reaction there is a process that is 
particularly suitable as an extreme model of two asynchronous 
reaction events. As emphasized particularly by More O'Ferrall,15 

energy surfaces with two progress variables generally include two 
asymptotic reaction paths in which the two events—call them (u) 
and (v)—take place in consecutive steps: (u) followed by {v) and 
(v) followed by (u). Completion of the first event on each path 
represents the formation of a real or virtual intermediate whose 
energy is in principle predictable. The transformation of one such 
intermediate into the other may therefore be chosen for the second 
reference reaction. It will be shown that when this is done, the 
combination of the two reference reactions provides a natural, 
direct basis for predicting both the mean progress (eq 8a) and 
the disparity of progress (eq 8b) of the reaction events at the 
transition state. It will also be shown that the freedom of the 
reaction events to progress independently lowers the activation 
energy. An expression will be obtained for AE* which consists 
of the same terms found in eq 1, plus a new, independent term 
which accounts for this lowering. 

Energy Barriers 
To judge the validity of structure-energy relations derived by 

Marcus' approach from energy surfaces with two progress vari­
ables, it is helpful first to examine one-dimensional energy barriers, 
especially those which lead to eq 1. 

Parabolic Barriers. Marcus' original barrier4 was a spline 
function consisting of two parabolas with equal quadratic coef-
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ficients joined back to back (Figure la). Kurz showed6 that the 
inverted parabola shown in Figure lb and described by eq 2 also 
agrees with eq 1. Both barriers use a normalized reaction co­
ordinate z, defined as a reaction coordinate which varies from zero 
for the reagents to unity for the products. In eq 2, AE = E - E1 

and AE° = Ep - Er; the suscripts r and p denote "reagents" and 
"products". Both parabolic barriers place the reaction coordinate 
of the transition state at the position given in eq 3. 

AE = 47z(l - z) + zAE° (2) 

z* = l/2+AE°/8y (3) 

Scaled Symmetry. Murdoch53 discovered that any barrier 
function of a normalized reaction coordinate agrees with eq 1 if 
the barrier has scaled symmetry, a kind of symmetry that permits 
reversing the role of reagents and products. To specify what this 
means, it is convenient to rewrite the equation for the barrier 
function by using E rather than AE as the dependent variable. 
For example, the two parabolic barriers indicated in Figure 1, parts 
a and b, are written in the form of eq 4a,b, where T[a < b] denotes 
the truth value (unity when the relation is true and zero otherwise) 
of the relation [a < b]. 

Figure la: E = (E, + 4yz2)T[z < z*] + E*T[z = z*] + 
(£p + 4 7 [ l - z ] 2 ) r [ l - z < l - z » ] (4a) 

Figure lb: E = 4yz(l - z) + E^z + E1(I - z) (4b) 

In this representation, a barrier function E has scaled symmetry 
if the simultaneous substitution of Ep for E1, Ex for £p, 1 - z for 
z, and 1 - z* for z* does not change it. A brief inspection will 
show that both parabolic barriers have scaled symmetry. Murdoch 
has given tests for scaled symmetry in other representations.5ae 

Barrier functions of scaled symmetry can be transformed into 
other barrier functions of scaled symmetry by suitable redefinition 
of the reaction coordinate. Let s denote a normalized reaction 
coordinate and E(s) have scaled symmetry. Murdoch has shown5* 
that for any 5 there exists a transformation, 5 -«• z(s), such that 
E(z) is the inverted parabola expressed by eq 2. In this sense, 
eq 2 encompasses all barrier functions of a normalized reaction 
coordinate that have scaled symmetry. 

Unsymmetrical Barriers, Unnormalized Reaction Coordinates. 
Kurz has suggested an elegant method for generating additional 
barriers that are consistent with eq 1.6 Let w denote any con­
tinuous reaction coordinate in the range wr to wp (from reagents 
to products). Let z(w) be a single-valued function of w which 
satisfies the conditions that z(wr) = 0 and z(wp) = 1. Substitution 
of z(w) in eq 2 then generates a function AE(w) which agrees with 
eq 1. Kurz pointed out that when z(w) = [exp(w)]/[l + exp(w)], 
the reaction coordinate varies from -°° for wr to +=> for wp, and 
substitution in (2) generates an Eckardt barrier (Figure Ic) with 
parameters y and AE0.6 When z = sin2 (irw/2), 0 <w < 1, there 
results a barrier of the type (Figure Id) often used for representing 
conformational changes. When r = wl/2, 0 < w < 1, there results 
a barrier of marked asymmetry (Figure Ie). 

While z(w) must be a single-valued function of w, the inverse 
function, w(z), need not be single valued. This allows the con­
struction of barrier functions with two or more maxima, so that 
the highest maximum conforms to eq 1. Thus Figure 1, parts f 
and g, shows barriers based on the function (5). 

z = A sin2 (1OmV)T[W < 0.1] + 
sin2 (5TT>V/8 -7r/16)r[0.1 < w < 0.9] + 

[ 1 + 5 sin2 (IOTT - 10iw)]7[0.9 <w]; 0 < w < 1 (5) 

In Figure If, A = 0.05 and B = -0.05. In Figure Ig, A = -0.05 
and B = -0.02. In both cases, AE0 is the energy change for the 
overall reaction (w = 0 —* w = 1), and the transition state for 
the overall reaction is represented by the central high maximum. 
The overall activation energy AE* thus agrees with eq 1. Figure 
If simulates a reaction whose reaction coordinate has two sub­
sidiary energy bumps. Figure Ig simulates a reaction whose 
reaction coordinate has one bump and one dip. (In the region 
of the dip, z is negative.) 

Energy Wells. Magnoli and Murdoch5"1 have generalized the 
method of Kurz6 in two respects: First, they showed that the 
barrier function into which z(w) may be substituted can be any 
member of a quadratic family of functions, described by them, 
which includes eq 2. This generalization further increases the 
diversity of barrier functions AE(w) which agree with eq 1. 
Second, they found that the energy parameter y may be negative, 
so that the "barrier" function AE(w) becomes an energy well. Both 
conceptions were tested by applying eq 1 to the formation of 
proton-bound dimers in gas-phase proton-transfer reactions.5d 

When y is negative and the "barrier" is an energy well, the 
"activation energy" AE* computed from eq 1 is negative and 
unrelated to any real rate constant. Nevertheless, the concept 
that an energy well is equivalent to a negative barrier will be quite 
useful when there are two progress variables. It will be noted, 
therefore, that energy wells have the same attributes for trans-
formability into parabolic shape as do energy barriers. Examples 
of a model energy well and the parabolic function into which it 
can be transformed are shown in Figure 2. 

Deviations from Equation 1. Validity of eq 1 requires appro­
priate barrier shapes for all members of the reaction series and 
reaction coordinates that depend on a single progress variable. 
The latter implies that y for the reaction series is a function of 
IAf0I and, in particular, that y is practically constant if |A£°| 
is of the order of y or less. Supposing for the moment that the 
requirement of a single progress variable is met, it is convenient 
to discuss the other issues together. 

It follows from eq 2 and 3 that, in order for reagents and 
products to lie on opposite sides of the parabolic maximum (Figure 
lb), |A£°| must be less than 47. For the accommodation of high 
values of |A£0 | , the parabola must become steeper, and 7 thus 
loses its constancy and increases with IAf0I.23 Also because of 
the high |A£°|, the reaction coordinate of the transition state 
approaches that of either the reagents or products, and the barrier's 
scaled symmetry may deteriorate because the encounter step gains 
in importance relative to the chemical transformation step on one 
side of the barrier but not on the other. Scaled symmetry and 
effective constancy of 7 therefore tend to be lost together. 

Although the frequent success of Marcus' theory in fitting 
experimental trends and propensities in reaction series shows that 
this theory is often a good first approximation, the assumption 
that the reaction coordinate depends on a single progress variable, 
it seems to me, is always an oversimplification. Marcus' theory 
should be most nearly correct for reactions with physically simple 
interaction mechanisms (such as triatomic displacement reactions, 
for which the BEBO theory, in which bond order is assumed to 
be conserved,24 also gives acceptable fits). 

It is desirable at this point to introduce a specific reaction series 
for which a single progress variable is clearly not sufficient, and 
which may later serve as a vehicle for calculations with two 
progress variables. I have chosen a series of proton-transfer 
identity reactions, eq 6, in which X is a variable substituent.25a,b 

Methanol is the solvent. Reagents and products are non-ionic, 
so that solvation effects will be in the normal range. 

Me 

/—\ ^ 0 H _ 0 * 

„i§K.-H<" •* 
x ^ M e 

Me 
, v . 0 — H 0 
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Table I. Data for Proton Exchange of Benzoic Acids in Methanol: 
Eq 6 and 17a 

ArCi » 8- ArCi0" ,0-Me 

10-5A:, s"1 

P*a° 
p*b" 
AG', kcal 
AG', kcal 
AW*, kcal 
Ii, kcal 
( A G 0 2 / 1 6 M 4 

7, kcal 
5AG*, eq 16 
3AG', obsd 

H 

0.66 
9.41 
23.4 
19.1 
10.88 
-1.96 
8.97 
2.65 
13.53 
(0.00) 
(0.00) 

m-NOj 

1.8 
8.34 
24.1 
21.5 
10.28 
-1.10 
8.42 
3.36 
13.64 
-0.71 
-0.60 

substituent 

P-NO2 

2.25 
8.33 
(24.2) 
21.6 
10.15 
-1.21 
8.63 
3.39 
13.54 
-0.74 
-0.73 

3,5-(N02)2 

8.0 
(7.28) 
(24.8) 
23.9 
9.40 
-0.53 
8.04 
4.15 
13.55 
-1.50 
-1.48 

0-NO2 

9.5 
7.56 
[24.5] 
23.1 
9.30 
-1.01 
8.75 
3.88 
13.18 
-1.23 
-1.58 

"Values in parentheses were estimated by linear free energy rela­
tions. The value in brackets is a mean estimate based on two models. 
4A mean value of M = 8.6 kcal was used. 

Rate constants k are listed in Table I. They are low enough 
to indicate that the reaction is activation rather than diffusion 
controlled. Although reactions with two or more proton transfers 
can also proceed by stepwise mechanisms,250 the present reaction 
mechanism is very likely concerted.25a,b With the possible ex­
ception of onitrobenzoic acid, steric hindrance effects are constant. 

Polar effects involving the substituents are known to be small 
perturbations. Thus, if a single progress variable were sufficient, 
and because AE° = 0, constancy of y could be expected. As a 
result, k (and the corresponding free energy of activation AG*) 
would be constant throughout the series. In fact (Table I), k varies 
by more than a factor of 10! The next section will show that this 
variation can be accounted for by introduction of a second progress 
variable. 

Because of the accuracy with which rate constants for pro­
ton-transfer identity reactions can be measured by dynamic NMR 
and hydrogen isotopic exchange, numerous series of identity re­
actions have been examined.26 I do not know of a single series 
in which substituent effects on AG* are experimentally insignificant 
and which thus conforms rigorously to the model of a single 
progress variable. 

Energy Surfaces with Two Progress Variables 
Choice of Progress Variables. As stated in the introduction, 

in case of two progress variables one needs two analogically 
suitable reference reactions whose reagents and products are 
species that appear on the energy surfaces. Moreover, in order 
to apply Marcus' theory, the reagents and products of any ref­
erence reaction must appear at the end points of a progress 
variable. To obtain variables which satisfy these conditions, the 
diagram shown in Figure 3 provides a convenient starting point. 
For illustration I shall use the concerted proton-transfer reaction 
7, which is a simplified version of (6) with only one molecule of 
methanol. 

^ 0 H ^ > 
A r - C 0 —Me 

^ 0 — H 

0—H 

A r - C 
< ,̂ 

O—Me (7) 

0 H ' 

The u,v axes and the species shown at the corners in Figure 
3 correspond to parts of a More O'Ferrall diagram.15 By hy­
pothesis, the reaction consists of two, more or less concerted, 
reaction events. The coordinates u and v measure the progress 
of these events on a scale from 0 to 1. [In eq 7, u and v might 
be bond orders of the indicated O-H bonds.] The points (0,0) 
and (1,1) in the u,v plane represent the reagents and products, 
respectively, and thus define a suitable reference reaction. The 
points (1,0) and (0,1) in the u,v plane [the two ion-pair species 

(26) (a) Grunwald, E.; Ralph, E. K. "Dynamic Nuclear Magnetic 
Resonance"; Jackman, L. M., Cotton, F. A., Eds.; Academic Press: New 
York, 1975; pp 621-647. (b) Murdoch, J. R.; Bryson, J. A.; McMillen, D. 
F.; Brauman, J. I. J. Am. Chem. Soc. 1982, 104, 600. 

-.0 Hs® 
ArCi0S R > M e 

Figure 3. Coordinate diagram for two reaction events. The normalized 
coordinates u and v represent the progress of the individual events. The 
normalized coordinates x and y represent mean progress and disparity 
of progress; see eq 8. The x,y axes are rotated by 45° relative to the u,v 
axes, and their origins are moved so that x and y intersect at ('/211A)-

in Figure 3] represent the two kinds of reaction intermediate that 
are possible when the two reaction events occur stepwise rather 
than simultaneously. The transformation of one intermediate into 
other is a chemical reaction and a natural choice as reference 
reaction, because it provides a standard of reference for asyn-
chronism of the reaction events. 

Accordingly, an x,y coordinate system has been drawn in Figure 
3 so that the x axis links reagents and products and the y axis 
links the two intermediates. The x,y coordinates are produced 
from the u,v coordinates by a 45° rotation, translation of the origin, 
and re-normalization. The result is (8). Thus x measures the 

(8a) x = (v + u)/2 

y = (v- u)/2 + >/2 (8b) 

mean progress and (y - '/2) measures the disparity of progress 
for the two reaction events. The (x,y) coordinates are (0,'/2) for 
the reagents r, (1,1A) for the products p; ('/'2,0) for intermediate 
i, and Q/i,l) for intermediate h. 

I shall use the following notation. The reference reaction r —-
p is the main reaction. The reference reaction i —• h is the 
disparity reaction. Motion along x is the mean progress mode. 
Motion along y is the disparity mode; see Figure 3. Energy 
parameters for the main reaction are AE°, AE*, and y, as before. 
The analogous energy parameters for the disparity rection are AE', 
AW*, and ix. AE'is defined as £(h) - E(i); AW* = E* - E(i). 
The reaction coordinate for the disparity reaction normally de­
scribes an energy well. The parameter n is the intrinsic well depth 
and is defined to be a positive number. 

Equation for Energy Surfaces. We have seen that a wide variety 
of energy barriers and wells based on a single progress variable 
can be transformed into parabolas. It is reasonable to assume 
that many energy surfaces based on two progress variables can 
similarly be transformed into quadratic equations. Following 
others, I shall initially represent E(x,y) for a reaction series by 
eq 9, in which c is a constant depending on the choice of zero level 
for the energy. Equation 9 can be simplified and its parameters 

E = 
c + ax(\ -x) + bx + dy(l-y) + ey+ f(x - Y2)Qy - l/2) (9) 

related to energy parameters of the reference reactions by applying 
Marcus' theory and appropriate boundary conditions, as follows. 

(1) For those reactions in the series for which u = v at all points 
z(x,y) along the reaction coordinate, y = '/2 (eq 8b) and the 
reaction coordinate coincides with the x axis. Thus, when z = 
x and y = '/2. (9) must reduce to (2). It follows that a = 4y and 
b = AE0. 

(2) A similar argument can be made to obtain d and e from 
energy parameters for the disparity reactions. Since each main 
reaction has a complementary disparity reaction (Figure 3), the 
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Figure 4. A hyperbolic paraboloid representing E(x,y) according to eq 
11. AE0 = AE' = 0. 

existence of a reaction series implies the existence of a series of 
disparity reactions. For each disparity reaction there is a reaction 
coordinate z ' which runs from i (x = l/2, y = 0) toh (x = x J2, 
.V=I). Although z'needs to coincide with they axis only at the 
end points, one may expect that there^will be a group of disparity 
reactions for which z' coincides with the y axis at all points. For 
instance, all disparity reactions that are complementary to identity 
reactions belong in this group. The mathematical condition for 
membership in this group is z\x,y) = z'(x/2,y), 0 < y < 1. When 
this condition is met, (9) must reduce to (10), which is the ana­
logue of (2) for disparity reactions. The quadratic term in (10) 

E = constant - 4 ^ ( 1 - y) + yAE' (10) 

appears with a negative sign because the "barrier" of the disparity 
reaction normally is an energy well; see below. It then follows 
that d = -Au and e = AE'. 

(3) When the given magnitudes of AE0 and AE' are small 
enough so that y and /x may be treated as intrinsic constants, the 
related perturbations of E(x,y) may be treated as linear pertur­
bations and are accounted for by the linear terms bx and ey in 
eq 9. Under such conditions the coefficient / in eq 9 is also an 
intrinsic constant.273 

This property enables us to evaluate/. The relevant boundary 
condition is that for any identity reaction in the series, the y,E 
plane at x = l/2 is a plane of symmetry. The cross term in (x 
~ 1Zi)Iy - 1Ii) in (9) must therefore vanish. It follows t h a t / = 
0.27c 

The final quadratic equation for E(x,y) is (11). 

E = c + 4TOC(1 - x) + xAE" - 4 ^ ( 1 - y) + yAE' (11) 

Equation 11 represents a distinct gain over eq 9 because the 
significance of the coefficients is no longer purely formal; there 
is now a clear connection to energy parameters of the reference 
reactions. Equation 11, and particularly the subsequent eq 14 
and 16, are in full agreement with equations obtained by Mur­
doch20 using an approach in which disparity of progress of the 
reaction events is treated as a perturbation of the intrinsic barrier 
for the main reaction. 

Equation 11 differs formally from an earlier treatment due to 
Critchlow18 because the coefficients of the quadratic terms are 
no longer constrained to be equal. It differs formally from the 
treatment of Jencks and Jencks21 by imposing the boundary 
condition that the series includes identity reactions, which elim­
inates the independent cross term in xy. Thus eq 11 constrains 
the reaction coordinates of all main reactions to be parallel to the 
x axis at the transition state, while the treatment of Jencks and 
Jencks, when applied to unsymmetrical reaction series, allows for 
variability of direction.21,27c 

Transition States. Rate Equations. Figure 4 shows the energy 
surface according to (11) for an intrinsic reaction, which is now 
defined by the condition that both AE0 and AE' are zero. The 
figure is a hyperbolic paraboloid normal to the x,y plane whose 
axis of symmetry passes through the point of intersection of the 
x and y axes. The reaction coordinate for the main reaction (in 
this case, the x axis) is the path of least energy from reagents to 
products: At any point z(x,y), dE/dy = 0, while dE/dx ^ 0 
except at the transition state. 

The reaction coordinate for the disparity reaction (the y axis 
in Figure 4) is the path along the saddle from y = 0 to y = 1 and 
thus is the path of greatest energy linking the species i and h. This 

becomes obvious when Figure 4 is turned upside down and the 
path along the saddle turns into a typical energy barrier. Thus, 
for the reaction coordinate of the disparity reaction, dE/dx = 0, 
while dE/dy ^ 0 except at the transition state. 

The transition state for either reaction is defined by the dual 
condition that dE/dx and dE/dy are both zero. Since energy 
surfaces consistent with (11) have only one point at which this 
condition is met, this point must be the common transition state 
for both reactions. This is important: The main reaction and its 
complementary disparity reaction have the same transition state! 

The condition that dE/dx = dE/dy = 0 at the transition state 
leads to the following coordinates (12). 

x* = l/2 + A £ ° / 8 T (12a) 

y* = l/2- AE'/Sn (12b) 

On substituting in (11), one obtains the following expressions for 
the energy. 

Reagents: E(O^2) =-fi + Y2AE'+ c (13a) 

Products: E(\,l/2) = AE° - n + >/2A£" + c (13b) 

Transition state: E(x*,y*) = 
y + 1Z2AE0 + (AE°)2/\6y - fi + 1Z2Af- (A£')2/16M+ c 

(13c) 

Transition state - reagents: 
\E* = y + y2AE° + (AE°)2/\6y - (AEf/16^ 

(14) 

Many problems involve relatively small changes in AE*. By 
deriving the differential form of (14) and substituting finite in­
crements for differentials one obtains eq 15. 

5AE* = 1Z2SAE" + (AE0/8y)5AE° - (AE'/°>n)5AE' (15) 

Finally, by solving (11) for E(i) = £(!/2,0) and E(h) = £( ' /2 , l) 
and subtracting E(r) and £(p), one obtains eq 16, which states 
that the two intrinsic "barriers" for a reaction family are not 
independent. However, in practical tests of eq 14 it may be 

7 + ^ = y2[E{h) + E(I) - E(r) - E(p)] (16) 

advisable to set aside eq 16 and treat y and n as independent 
parameters, especially when [E(h) + E(i) - E(r) - E(p)] are not 
known with good accuracy. 

While eq 12 and 13 are specific for quadratic energy surfaces 
of the form of (9) wi th / = 0, eq 14 and 15 are more general, 
applying to any series of energy surfaces which can be transformed 
into this quadratic form. This property is inherently less common 
for two-dimensional surfaces than for one-dimensional barriers, 
but the scope of transformability may still be broad, especially 
if the fit of eq 14 and 15 need not be mathematically exact. As 
in the case of one-dimensional barriers, the quality of fit may 
deteriorate, however, for reactions whose transition states lie near 
the edges of the coordinate diagram, where theoretical require­
ments of scaled symmetry on the energy surfaces may not be met 
in adequate approximation. 

A Numerical Example. For an initial test of validity, eq 14 will 
be applied to the proton-transfer identity reactions in (6). The 
generalized energy E will be represented by the Gibbs free energy 
G. Since AG0 is identically zero, eq 14 reduces to (17a). 

AG' = y-(AGf/\^\ AG° = 0 (17a) 

AG'for the disparity reaction will be obtained from data for 
acid (K3) and base (Kb) dissociation of benzoic acids. Acid 

ArCOOH + MeOH = ArCOO" + MeOH2
+ (KJ 

ArCOOH + MeOH = ArC(OH2)+ + MeO" (Kb) 

dissociation constants ATa have been measured for a series of 
benzoic acids directly in methanol.255 Base dissociation constants 
Kh have been reported in water, based on Hammett's acidity 
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function and measurements in strongly acidic aqueous solutions;28" 
values for additional meta- and para-substituted acids,28a and the 
effect of the change of solvent from water to methanol,28b were 
estimated with adequate accuracy by applying appropriate pa and 
mY0 equations. pKb for o-nitrobenzoic acid was estimated from 
measured results by two models: (i) that for 0-NO2, the steric 
effect on pKh is the same as that on pATa; (ii) that the ortho/para 
ratio of Kb for nitro is the same as that for methyl. The two 
methods gave similar results; the mean estimate was used. All 
values to be used for pKA and pKb are listed in Table I. 

Although the intermediates shown in Figure 3 are ion pairs, 
I shall choose the disparity reaction to be (17b), which involves 
free ions. The extension of the end points of the disparity mode 

ArCOO- + MeOH2
+ = ArC(OH)2

+ + MeO" (17b) 

AG' = 2.303/?r(pATb - pATa) (17c) 

from ion pairs to free ions undoubtedly complicates the shapes 
of the energy functions that one hopes to transform into parabolas. 
However, it need not spoil the transformability, and the choice 
of (17b) permits the use of well-defined data, which do not exist 
when the end points are ion pairs. Results obtained in this way 
for AG' are listed in Table I. 

The next three rows of data in Table I were calculated according 
to eq 18. Equation 18b follows from the definition of AW*, which 

AG* = -RT Ink + RT In (k^T/h) (18a) 

AW* = AG* - 2.303RTpKt (18b) 

AW* = -M + ^2AG'- ( A G ' ) 2 / 1 6 M (18C) 

M = AG'/4 - l/2AW*(l + [1 - AG'/AW*]1/2) (18d) 

here takes the form AW* = G* - G(ArCOO") - G(MeOH2
+). 

Equation 18c is analogous to eq 1 but applies to the disparity mode. 
Equation 18 d is the solution of (18c) for \i and was used in the 
calculations. The values thus obtained for p. (Table I) are es­
sentially constant; the fluctuations are consistent with the probable 
errors of AG'and AfT*. 

The next two rows in Table I list values obtained for (AG02/16/u 
based on the average p (8.6 ± 0.3 kcal) and for y based on eq 
17a. The last two rows compare 8AG* as predicted by (17a) with 
the experimental values. 

Because the energy well p. was treated as an intrinsic constant 
and a mean value was used, the test of eq 17a involves one pa­
rameter to fit five data points. By the standards of linear free 
energy relations, the fit is good. The mean deviation is 0.12 kcal, 
which corresponds to 20% mean deviation for the rate constant 
k and equals the mean fit of Hammett's pa equation.280 The most 
deviant point is that for o-nitrobenzoic acid, where AG'is relatively 
uncertain. 

Reaction Mechanism and Disparity 
Description of Transition State. Structure-reactivity rela­

tionships have been used to help characterize reaction mechanisms 
for well over half a century. In the present approach, the reaction 
mechanism is defined by the number of progress variables and 
the nature of the disparity reactions. Ideally, the correct mech­
anism will fit the given structure-reactivity data and other 
mechanisms will not. Returning to reaction 6, the data for 

(27) (a) When | A £ ° | / Y and/or \AE'\l\i are so large that the approxima­
tion of linear perturbations becomes inadequate, / becomes a function of 
AE"AE'. It is likely that in a power series expansion of/, the leading term 
is of higher than first power in AE0AE'. (b) When y and \i may be regarded 
as intrinsic constants, it follows from ref 16 that substituent effects on [£(h) 
+ £(i) - £(r) - E(p)] vanish. For identity reactions it then follows that S[E(h) 
- £(r)] = -8[E(i) - E(T)]. (c) A symmetry-independent alternate condition 
for/= O is that the disparity \v - u\ goes through a maximum at the transition 

(28) (a) Stewart, R.; Yates, K. J. Am. Chem. Soc. 1960, 82, 4059. (b) 
p/fa(HA+,MeOH) - ptf,(HA+,HOH) = 0.8 (estimate). ptf„(HA,MeOH) = 
16.92 - pAT,(HA+,MeOH). 16.92 is the pAT(autoprotolysis) of MeOH. (c) 
Jaffe, H. H. Chem. Rev. 1953, 53, 191. 

Table II. Transition-State Coordinates in Symmetrical Proton 
Exchange of Benzoic Acids in Methanol" 

*•» 
y*b 

u>c 

v,c 

n" 

H 

V2 
0.222 
0.778 
0.222 
0.56 

W-NO2 

V2 
0.188 
0.812 
0.188 
0.62 

substituenl 

P-NO2 

V2 
0.186 
0.814 
0.186 
0.63 

t 

3,5-(N02)2 

V2 
0.153 
0.847 
0.153 
0.69 

o-N02 

V2 
0.164 
0.836 
0.164 
0.67 

"Based on the mechanism in Figure 3 and data in Table I. 
Equation 12. ^Equation 8. ^Equation 19. 

( A G 0 2 / 1 6 M in Table I show that disparity makes a numerically 
important contribution to AG*, both absolutely and relatively. A 
change of mechanism, say from proton transfer to hydride transfer, 
would require a change of disparity reaction and thus would lead 
to diagnostically different values for (AG02/16ji. 

Given the reaction mechanism, description of the transition state 
by specifying the progress coordinates is straightforward. In case 
of two progress variables the relevant equations are (12) and (8). 
For an example, Table II lists values obtained for x*, y*, u*, and 
v* for reaction 6. Because the reaction series is limited to identity 
reactions, x* is identically '/2. but y* and the initial progress 
variables u* and v* (Figure 3) are different from ' / 2 and vary 
considerably with the substituent. For identity reactions, u* + 
v* add up to unity, but in general that is not true. 

The numbers listed in Table II show that the transition state 
has substantial methyloxonium benzoate ion-pair character, 
progress of proton transfer from the carboxyl O-H bond being 
well ahead of that from the methanol O-H bond. In interpreting 
the numbers it should be remembered that the full scales range 
from 0 to 1, and that the coordinates have been projected from 
a quadratic energy surface. Thus the coordinates cannot auto­
matically be identified with such intuitive measures of reaction 
progress as bond order or partial charge. Fortunately, the to­
pological relationships among the points representing the transition 
states are invariant to transformation of the progress variables, 
so that the relative values do have mechanistic significance. Thus 
one may conclude from the numbers in Table II that in reaction 
6, electron-removing substituents tend to increase the methyl­
oxonium benzoate character of the transition state by significant 
amounts. 

It is convenient to express disparity at the transition state in 
terms of a single parameter by defining a disparity index rj ac­
cording to (19). Note that the definition employs the magnitude 
of AE°. In terms of the original variables, rj = (u* - v*)/(u* + 
v*) for reaction in the exoergic direction. In terms of Figure 3, 
rj ranges from +1 to -1 as the transition state moves along the 
disparity coordinate from state i to state h. Values of r\ for reaction 
6 are included in Table II. 

V = (A£ ' /4 M ) / (1 - \AE°\/4y) (19) 

Constancy of Transition-State Coordinates. A reaction 
mechanism, as defined here, is specified by the number of progress 
variables and by the nature of the disparity reactions. An array 
of reactions which, by this definition, all proceed with the same 
mechanism will be called a mechanistic family. Such an array 
is multi-dimensional, the number of dimensions being equal to 
the number of reagent species and environmental variables that 
can be varied independently without changing the mechanism. 
A reaction series is a particular row or column of such an array 
in which only one of the variables is changing. A mechanistic 
family thus comprises a large number of reaction series. 

Mean progress and disparity of progress at the transition state 
need not be constant, even within the relatively narrow confines 
of a reaction series. In the case of two progress variables this is 
clear from eq 12, since both AE" and AE' may vary with the 
reaction. In many reaction series these changes are relatively 
small, however, so that the coefficients A£°/87 and AE'/%p in 
eq 15 remain nearly constant. In such series the transition-state 
coordinates are essentially constant. A number of extensive re­
action series of this type were documented recently by Bordwell 
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adn Hughes29 and interpreted in terms of constancy of transi­
tion-state coordinates. The present view differs from theirs, 
however, in that the constancy is thought to be fundamentally 
approximate rather than exact. 

The disparity coordinate at the transition state can be expected 
to vary widely within a reaction series when the energies E(i) and 
£(h) of both disparity species happen to be only slightly greater 
than that of the transition state. In that case fi is necessarily small, 
and changes of normal magnitude in AE' according to (12b) cause 
relatively large changes in y*. As a result the transition states 
within a reaction series move easily along the disparity coordinate 
and those transition-state properties that depend on resemblance 
to a disparity species vary considerably. 

In the comparison of formally similar reactions it may be 
difficult to distinguish between a constant mechanism with a highly 
variable disparity at the transition state and a genuine change of 
mechanism. For instance, if \i is small and y* approaches either 
zero or unity, a change whose normal effect might be that of a 
perturbation can shift the reaction mechanism from concerted to 
stepwise. Some nucleophilic substitution reactions at a saturated 
carbon atom, including those of tert-b\xty\22h and a-phenylethyl30 

halides, manifest borderline mechanisms that seem to fit this 
description. 

Energy of Disparity Species. The disparity coordinate of the 
transition state according to (12b) varies linearly with A£'and 
thus depends on both the magnitude and sign of AE'. By contrast, 
the activation energy according to (14) varies linearly with (AE')2 

and thus depends only on the magnitude of AE'. While the more 
stable disparity species thus has the greater weight in determining 
the structure of the transition state, both species have symmetrical 
status in determining the activation energy. In quantitative ap­
plications the energies of both disparity species must be known. 

Because of the exotic nature of many disparity species, it is not 
usual for the energies of both species to be known by direct 
measurement, and some of the required values must be predicted. 
Fortunately one can rely on semiquantitative methods for making 
such predictions in many problems of interest. However, instead 
of giving a review of such methods I shall, in the following, discuss 
two kinds of cases that strike me as inherently difficult: First, 
the kind in which the More O'Ferrall plane is essentially a triangle 
because only three of the corners are occupied by definable 
chemical species; they are the reagents r, the products p, and one 
disparity intermediate i. The fourth corner is not a species but 
corresponds to the asymptotic limit of a repulsion branch. In the 
second kind of cases to be discussed, the nature of the reaction 
events is such that one or both of the disparity "intermediates" 
are unstable states rather than metastable species. 

When the More O'Ferrall plane is essentially a triangle, let the 
(x,y) coordinates be (O,1/^) for the reagents r, (l,1/^) for the 
products p, and (72,0) for the disparity species i. Assume, as 
before, that E(x,y) in the triangle is reproduced by a quadratic 
equation of the form of (11) with parameters y, n, and (AEy. 
Let E(x,y) be extrapolated outside the triangle and let E(K)' denote 
the extrapolated value of the energy at the corner point ('/2,1). 
Apply eq 16 and assume that y + n is constant for the reaction 
series, that is, 8(y + /n) = 0. On that basis, (8AEy is given by 
(20a). While direct application of (14) may not be feasible, 

(5AEy = 8[E(h)' - E(i)] = 8[2E(i) - E(r) - E(p)] (20a) 

changes in reactivity within the reaction series are then given by 
(20b), which is analogous to (15). The parameter s'corresponds 
to (AEy/Sn. 

SAE* = 
y28AE° + (AE0/Sy)SAE" - s'8[2E(i) - E(i) - E(p)] (20b) 

Unstable States as Disparity Species. In Figure 3, the ion pairs 
at the end points of the disparity mode are metastable species— 
species which occupy stationary states on the untransformed energy 
surfaces. After transformation to quadratic energy surfaces, 

(29) Bordwell, F. G.; Hughes, D. L. / . Org. Chem. 1980, 45, 3314. 

however, the points representing the ion pairs are no longer sta­
tionary points. 

Reflection will show that there is no basic reason for requiring 
the end points of the disparity mode to be stationary states.17b It 
is sufficient that the electronic and molecular structures at the 
end points be clearly defined and that the energy surface between 
the end points be transformable into quadratic form. Thus the 
disparity reaction need not be a real reaction involving metastable 
intermediates. It may be a virtual reaction involving any two 
molecular configurations that provide natural models for asyn-
chronism of the presumed reaction events. 

This liberalization enlarges the scope of the present theory. 
While not changing any mathematical requirements on the energy 
functions, it eliminates physical constraints as to the nature of 
the concerted reaction events. For instance, reactions in which 
a bond-breaking event occurs simultaneously with an electronic 
rearrangement can now be treated, at least in principle, as will 
be illustrated in the next section. However, when one or both end 
points of the disparity mode are unstable configurations, it becomes 
difficult to obtain absolute energy parameters for the disparity 
reactions, and the use of eq 14 is practically precluded. On the 
other hand, relative energies 8AE', such as substituent and medium 
effects, can often be predicted by methods of analogy, using 
structurally similar but stable species as models. The use of eq 
15 may therefore be practical. The factor AE'/Sn in (15) then 
becomes an adjustable parameter. 

Proton Transfer of a-Nitrotoluene. The reaction of meta- and 
para-substituted a-nitrotoluenes with hydroxide ion in water, eq 
21, proceeds with electronic rearrangement, the product being the 
nitronate anion rather than the electronically unrearranged car-
banion conjugate base.31 Bronsted plots of log k vs. log K for 

^ ) - C - N O 2 + OH" J 7 J ^ 

( P ) V - C = N^ + HOH (21) 

this series, as well as for other reaction series in which a proton 
is removed from a-nitro carbon acids, have slopes lying outside 
the theoretical limits, 0 to 1, established for a single progress 
variable.31,32 For the reaction series in (21), for example, the 
Bronsted slope a = 1.54. Since Bronsted slopes for a series of 
proton-transfer reactions normally fall within the theoretical limits, 
the phenomenon has been called the "nitromethane anomaly".323 

Jencks and Jencks21 have shown that when there are two 
progress variables, Bronsted slopes lying outside the range 0 to 
1 become theoretically possible. For a-nitro carbon acids in 
particular, they suggested that the two reaction events, proton 
transfer and electron rearrangement, exist in large disparity at 
the transition state, and that this accounts for the anomalous 
Bronsted slopes. I wish to develop their suggestion in terms of 
the present theory. For definiteness I shall proceed in a quan­
titative manner. However, whatever validity this development 
may have is qualitative. 

The coordinate diagram for reaction 21, based on proton 
transfer and electronic rearrangement as the reaction events, is 
shown in Figure 5. The end points of the disparity mode are the 
species that result from proton transfer without electronic rear­
rangement: the nitronic acid from the products and the a-ni-
trobenzyl anion from the reagents. The former is probably a 
metastable and perhaps isolable species; the latter represents an 
unstable configuration. 

The generalized energy E in the theoretical equations will be 
specialized to the free energy <7. Because the reaction series 

(30) Richard, R. P.; Rothenberg, M. E.; Jencks, W. P. J. Am. Chem. Soc. 
1984, 106, 1361. 

(31) Bordwell, F. G.; Boyle, W. J. / . Am. Chem. Soc. 1972, 94, 3907. 
(32) (a) Kresge, A. J. Can. J. Chem. 1974, 52, 1897. (b) Kresge, A. J. 

Chem. Soc. Rev. 1973, 2, 491. 
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Figure 5. Coordinate diagram for reaction of meta- and para-substitued 
a-nitrotoluenes with hydroxide ion. The reaction events are proton 
transfer and electronic rearrangement. 

comprises a series of meta and para substituents, it is convenient 
to proceed on the basis of Hammett pa equations. All SAG terms 
will therefore be written in the form -2.303RTpSa. On substi­
tuting in (15) and eliminating the common factor -2.303 RT Sa, 
one obtains (22). Experimental values are p* = 1.28, p(r —• p) 

0* = P(T p) /2 + [AG"/By]p(r - p) 

a = p*/p(x — p) 

[AG'/8M]p(i - h) 
(22a) 

(22b) 

= 0.83, and a = 1.54.31 For unsubstituted a-nitrotoluene, AG0 

= -9.71 kcal and AG* = 14.42 kcal.31 On substituting in eq 1, 
one obtains y = 19.0 kcal. (This is a minimum value because 
eq 1 does not allow for the second progress variable. A more likely 
value, for subsequent use, is 7 = 22 kcal.) 

To estimate p(i -*• h), it is convenient first to estimate p for 
the "normal" proton transfers r —- i, and h —• p. A reasonable 
model for r —• i is the reaction of hydroxide with meta- and 
para-substituted phenols; hence p(r -* i) = 2.1 l.28c,33a For h -»• 
p, I shall try two models: hydroxide + ArCH=NOH; p = 0.86.28c 

And multiplying p for phenols by an attenuation factor for the 
C H = N group. The attenuation factor is 0.46 on the basis of 
cinnamic/benzoic acids.280 This model gives p(h —*• p) = 0.97. 
The mean estimate is p(h -*• p) = 0.92. Accordingly, p(i —* h) 
= p(r — p) - p(r — i) - p(h — p) - -2.20. 

Unfortunately there are no simple, apt models for estimating 
AG'and p., either individually or in ratio. I shall therefore use 
the preceding data to calculate AG'/Bp, from eq 22 and the dis­
parity index 77 from eq 19 and then examine the results for physical 
acceptability and plausibility. Results are AG'/Bp. = 0.41 and 
1) = 0.9.33b Both are less than their upper limits of '/2 a n d 1, 
respectively, and are physically acceptable. As to plausibility, the 
experimental facts are anomalous in their field. If one wishes to 
explain them in terms of disparity of two reaction events at the 
transition state, perhaps one ought not be surprised if the disparity 
index is high. By comparison, for the proton transfer reaction 
6, which is not regarded as anomalous, 77 was found to be in the 
range 0.56-0.69 (Table II). 

If the preceding mechanism is valid, several conclusions follow. 
(1) The data establish unambiguously the sign of the disparity. 
At the transition state, the progress variable for proton transfer 
is ahead of that for electron rearrangement. 

(2) On substitution in (12), one finds that at the transition state, 
x* = 0.45 and y* = 0.09. Transforming from x,y to u,v coor­
dinates (Figure 3 and eq 8) one finds that u* (progress variable 
for proton transfer) = 0.86 and v* (progress variable for electronic 
rearrangement) = 0.04. The transition state therefore resembles 
a carbanion. However, even though electronic rearrangement is 
not far advanced, the freedom, for it to occur at all, results in a 
significant lowering of AG*. 

(3) Because the main reaction and the disparity reaction share 
a common transition state, the geometrical structure of the 
transition state must be such that the proton can form weak bonds 

BH • 0 ' + C'O 
R 

(0 I) 

' (1/2,1) 

h 
(I 

BH + ° - C - 0 s 

R 

( I , I) 

UZ) 'l 
I 

3 I 

(0,01 Bond forming to X ' O (1,0) 

B + H-O + C-O 
R ' 

B° H-O-C-O 
R ' 

Figure 6. Coordinate diagram for base-catalyzed addition of alcohols to 
carbonyl compounds. The reaction events are nucleophilic addition of 
ROH to > C = 0 and proton transfer from ROH to B-. 

to both carbon and oxygen, as in (23). This places constraints 
on the directions from which hydroxide ion may attack. 

•0 
(23) 

(4) Because of the high disparity index, one may infer that the 
transition state and the electronically unrearranged a-nitrobenzyl 
anion have nearly the same energy; \AW*\ is probably less than 
2 kcal. Hence the free energy change for electronic rearrangement 
AG(er) « AG* - AG° = 24 kcal. 

Structure-Energy Relations 
When AE°/8y and AE' /Bp may be regarded as constant, eq 

15 is formally identical with a conventional linear free energy 
relation in which a given reaction series is compared with two 
model reaction series in linear combination.2 The connection to 

SAE* = Y2SAE" + (AE0/By)SAE0 - (AE'/Bn)-SAE' (15) 

conventional linear free energy relations is much closer, however, 
than mere identity of mathematical form. Like any reaction, the 
main and disparity reactions can be represented as sums and 
differences of subsidiary reactions, and AE0 and AE' can be 
represented accordingly as sums and differences of the subsidiary 
energy changes. It is often possible to demonstrate in this way 
that eq 15 is equivalent to established linear free energy relations. 
More important, this method leads to explicit equations which 
identify the empirical slopes of the linear free energy relations 
in terms of energy parameters for specific reactions. 

To illustrate this method, I shall use a reaction whose kinetics 
and mechanism have been much studied,34,35 the base-catalyzed 
addition of alcohols to carbonyl compounds, eq 24. The concerted 

B" + HOR + >C= BH + RO- (24) 

reaction events are thought to be proton transfer from HOR to 
B" and nucleophilic addition of HOR to the carbonyl group.35 The 
coordinate diagram for this mechanism is shown in Figure 6, and 
the disparity reaction is eq 25. To generate previously used35 

structure-energy relations, I shall relate AG* for reaction 24 to 

(33) (a) Prof. W. P. Jencks has pointed out that this estimate may be too 
small, judging by substituent effects on pATa of 2-substituted fluorenes. p/Ca 
values for these carbon acids have been reported by Bowden et al. and Borwell 
et al. [Bowden, K.; Cockerill, A. F.; Gilbert, J. R. J. Chem. Soc. B 1970, 179. 
Bordwell, F. G.; McCollum, G. J. J. Org. Chem. 1976, 41, 2391]. (b) If 
p(r-*i) > 1.11, the correct results will be <0.41 and <0.9, respectively. 

(34) Bell, R. P. "The Proton in Chemistry"; 2nd ed.; Cornell University 
Press: Ithaca, NY, 1973; pp 183-190. 

(35) Funderburk, L. H.; Aldwin, L.; Jencks, W. P. J. Am. Chem. Soc. 
1978, 700, 5444. 
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B - + R-OH+-CO - -— BH + RO" + > C = 0 (25) 

AGHB for acid dissociation of HB and to AGH0R for acid disso­
ciation of HOR. 

In applying eq 14 and 15, "energy" will be specialized to free 
energy. It is convenient to introduce the following subsidiary 
reactions. Free energy changes for reactions 26-30 have been 

HB ^ H+ + B - ; AffHB 

ROH ^ H * t RO" j &SH0R 

> C = 0 H + ^ ± H+ + > C = 0 ; &GK 

ROH + >C = R - O H - C O - AG1 

(26) 

(27) 

(28) 

(29) 

(30) 

reported for several reaction series.35 AG0 for (24) and AG'for 
(25) are related to them according to (31) and (32). 

AG0 = -AG H B + AGX (31) 

AG' = -AGHB + AGH0R - AGY (32) 

The main reaction, 24, involves three reagents whose structures 
can vary independently: B", HOR, and > C = 0 . I shall therefore 
let AGHB, AGH0R, and AGK be the independent variables of the 
structure-energy relationship. As a consequence, AGX and AGY 

become dependent variables; they depend on HOR and > C = 0 . 
I shall represent them as functions of AG1*-* and AGK, as indicated 
in (33). The desired structure-energy relations 35-39 are ob-

AGX = AGX(AGH0R,AGK); AGY = AGY(AGH0R,AGK) (33) 

tained from (34) by substitution of 31-33 and partial differen­
tiation. The partial first derivatives /3 and /?Nuc are slopes of 
(possibly curved) Bronsted relations. The partial second deriv­
atives are proportional to structure-reactivity coefficients as de­
fined by Jencks and Jencks.21 

AG* = y + Y2AG" + (AG°)2/167 - ( A G 0 2 / 1 6 M (34) 

<3AG* _ 1 AG^ _ AG_' 

' dAGHB ~ 2 8 7 8M 
(35) 

0Nuc ~ 
<3AG* 

«9AGH0R 

Il + ^ l \ dAGx / AG_'V <3AGY \ 
V 2 87 / <9AGH0R V 8^ A <3AGH0R/ 

32AG* 

dAGH0R 

62AG* 

d{AGm)2 

1 

(36) 

= -L-
~ 87 

<9AGX 

8M 

1 dAGY 

dAGHB dAGHOR 87 <9AGH0R 8M <9AGH0R 

(37) 

(38) 

d2AG* 1 / <9AGX V ; 

a(AGH0R)2 8 7 \ a A G H O R / 

/ l AG0 \ 

(2 + 17J 

8M V 3AGHOR/ 

32AGX 

87 / 3(AGHOR)2 

AG' 52AGY 

8M d(AGH0R) : 
(39) 

The structure-energy relations 35-39 divide themselves into 
two groups: direct and conditional. Equations 35 and 37 are direct 
relationships; they do not depend on the existence of additional 
structure-energy relations. Equations 36, 38, and 39 are con­
ditional relationships; they require that partial derivatives of AG54 

and AGY with respect to AGH0R exist. There is a high a priori 
probability that this condition is satisfied when eq 34 applies, 
because reactions 24, 25, 29, and 30 involve the same kind of 
species; but there is no physical necessity. 

In their experimental study,35 Funderburk, Aldwin, and Jencks 
used formaldehyde as the carbonyl substrate and allowed ROH 
and B" to vary independently, generating a two-dimensional array 
of rate constants. Their results may be summarized for the present 
purpose as follows. (1) For any given ROH, a plot of AG* vs. 
AGHB is essentially a straight line whose slope -0 varies smoothly 
with AGH0R of the alcohol. Thus d2AG*/d(AGHB)2 « O and 
#AG*/5AGHBaAGH0R yi O. (2) For any given HA, a plot of AG* 
vs. AG™R is essentially a smooth, curved line which passes through 
a real maximum in the experimental range. Because the changes 
of alcohol structure are known to be mild, constancy of reaction 
mechanism may be assumed. The plots therefore indicate the need 
for a basic physical theory, such as the present one, which permits 
nonlinear relationships even when the reaction mechanism is 
constant. 

From a different perspective, perhaps the most important 
feature of the results is simply that the relationships are smooth. 
This shows that the derivatives on the left-hand sides of eq 35-39 
really exist and that necessary physical conditions for the existence 
of structure-energy relations are satisfied. Contingent upon the 
sufficiency of two progress variables, eq 34 will therefore apply. 

Equations 35-39 can explain why the plots of AG* vs. AGHB 

might be straight lines while those of AG* vs. AGH0R are curved. 
Equation 37 indicates that a plot of AG* vs. AGHB will be an 
accurate straight line if 7 and M are equal. In terms of eq 35, 
this is because the difference (AG0 - AG) is independent of AGHB; 
see eq 31 and 32. However, because it is difficult to ascertain 
the curvature of experimental plots, the plots may be indistin­
guishable from straight lines even when 7 and M differ consid­
erably. In any event, barring numerical coincidences, eq 38 
predicts that the slopes (-/3) will vary with the alcohol. 

Equation 36 shows, on the other hand, that plots of AG* vs. 
AGH0R are curved, except in improbable special cases. Among 
the reasons for curvature, (AG0 - AGO ' s n°t independent of 
AGH0R. Also, <9AGx/<9AGHOR and <9AGY/<9AGHOR are nonzero; 
numerical estimates are 0.2 and -0.8, respectively. Depending 
on the magnitudes and signs of AG° and AG', the equation permits 
plots of AG* vs. AGH0R to show maxima. Thus the potential exists 
that this complicated phenomenology can be reproduced. Nu­
merical tests are in progress and look encouraging. 

When combined with eq 12 and 8, eq 35 and 36 relate the 
empirical slopes /3 and /3Nuc to progress variables at the transition 
state. In particular, -0 = x* + y* - x/2 = v* and thus is con­
strained to lie in the range 0-1. In terms of Figure 6, -/3 is a vector 
whose direction coincides with that of the v axis. 

On the other hand, -/3Nuc = x* dAGx/dAGB0R + (y* - V2)(I 
- 3AGY/dAGH0R) and can have values outside the range 0-1. 
Using estimates of 0.2 and -0.8 respectively for the partial de­
rivatives, one predicts that when y* = ]/2, -(3NUC is m the range 
0-0.2; when x* = '/2. ~/3Nuc is in the range -0.8 to 1.0. In terms 
of Figure 6, -/3Nuc does not measure progress along the u axis. 

Concluding Remarks. If the present theory is valid, it will 
enhance the precision with which structure-energy relationships 
can be used in the definition of reaction mechanisms. It will also 
lead to the revision of some traditional beliefs about the possible 
complexity of structure-energy relationships for a constant reaction 
mechanism. Further tests of the theory, and its extension to 
include more than two reaction events, are in progress. It seems 
possible, indeed probable, that a broad basis for the derivation 
of structure-energy relations from physical principles can be built 
in this way. 
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